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Random migrations of non-Brownian neutrally buoyant particles in the flow of a dilute suspension in a
periodic Couette cell is simulated on the basis of a dipole model. A diffusivity is due to far-field collective
hydrodynamic interactions. Large-scale fluctuations of particle concentration induce fluid velocity disturbances
with a length scale comparable to the cell size. The calculated self-diffusivity coefficient is linear in particle
volume content and agrees well with the experimental data.
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I. INTRODUCTION

Non-Brownian neutrally buoyant particles migrate ran-
domly across the streamlines of a carrier flow in sheared
suspensions at small Reynolds numbers �1–3�. Migrations
are due to the hydrodynamic interactions between the par-
ticles which cause velocities to fluctuate about the mean val-
ues. The phenomenon was explained by irreversibilities of
particle interactions. The trajectories of two isolated interact-
ing spheres undergoing a shear flow are symmetric and re-
versible in the Stokes regime. After the spheres have sepa-
rated, they return to their original streamlines. Interactions of
three or more particles �4� or interactions of two rough
spheres �5� break the symmetry and lead to net transversal
displacements. The three-particle mechanism �4� requires the
diffusivity Ds to be quadratic in the particle volume content
�, since the probability for a tracer particle to interact with
two other close particles scales as �2. For this reason the
mechanism is relevant for dense suspensions. In the experi-
ments for dilute suspensions �6�, Ds was found to be linear in
particle volume fraction �. The rough-sphere model �5�
gives correct linear dependence in �. However, the experi-
mental value of the diffusivity �6� is an order of magnitude
greater than the theoretical predictions.

A new mechanism of the diffusivity in a dilute suspension
has been proposed very recently �7� for a wall-bounded shear
flow. When an initial separation in the normal direction is
small, the normal component of relative particle velocity
may change the sign due to far-field interactions with the
walls. As a result the particles do not pass each other but
exchange their positions in the gradient direction. Reversing
trajectories result in a particle cross-stream migration. The
calculated diffusivity agrees quantitatively with the experi-
mental value. Reversing trajectories prevent near-contact
particle encounters, and particle separations in the flow and
vorticity directions remain large compared to the particle ra-
dius a�, of the order of 0.2H� for typical experimental values,
�=0.01, a� /H�=0.025 �6�, where H� is the separation be-
tween the walls. Such pairs are not isolated but always have
neighbors, as the separations are comparable with an inter-
particle distance.

The diffusivity is calculated using the simulations of par-
ticle motion in a wall-bounded cell. Different numerical ap-
proaches based on the detailed treatment of flow field around
each dispersed particle, e.g., accelerated Stokesian dynamics
�ASD� �8� and the two-dimensional �2D� lattice-Boltzmann
model �LBM� �9�, were applied to simulate dense sheared
suspensions, �=0.1–0.5. The number of particles in a sys-
tem is typically 1000. Sierou and Brady �8� showed the im-
portance of high particle numbers and long simulation time
to predict correctly the diffusion coefficient.

In the present work the mechanism of the diffusivity in a
dilute suspension due to long-range collective interactions is
studied. Large-scale fluctuations of particle concentration in-
duce fluid velocity disturbances with the length scale of
order of the separation between the walls. A large-scale flow
is simulated using a simplified model of point particles.
The approach was applied previously to calculate the
fluctuations in dilute sedimenting suspensions �10–12� when
the particle effect is approximated by point forces. In sheared
suspensions the effect of a freely rotating neutrally buoyant
particle is equivalent to symmetric force dipole at large
distances �13�. The equations governing disturbance flow and
particle motion in a rectangular periodic cell bounded by two
parallel no-slip walls are derived in Sec. II. They are
solved in terms of Fourier series. The numerical results
are discussed in Sec. III. Finally, they are summarized in
Sec. IV.

II. GOVERNING EQUATIONS

The motion of N identical point particles in a rectangular
cell is simulated. The x, y, and z axes are directed along the
undisturbed Couette flow, the velocity gradient and the vor-
ticity, respectively, ex, ey, and ez are the unit vectors. The cell
is bounded by two rigid walls in the y direction and periodic
in two other directions. Non-Brownian particles are distrib-
uted randomly over the cell at t=0.

The governing equations are nondimensionalized using
the distance between the walls H� and the shear rate �̇. Par-
ticle velocity in a dilute suspension is assumed to be the sum
of the velocity of the undisturbed Couette flow and large-
scale disturbances due to particle effect. Then the equation of
motion of lth particle is written as
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dxl

dt
= ylex + u�t,xl�, l = 1, . . . ,N , �1�

xl = �xl,yl,zl�, xl�0� = xl0,

u = �
j�l

N

u j�x j,xl� . �2�

Here u is a fluid velocity disturbance at the particle position
xl due to interactions with other particles. The effect of a
particle freely rotating in a shear flow can be approximated at
distances large compared to a� by symmetric force dipole
�13�. The local shear-rate induced by other particles in a
dilute suspension is assumed to be small compared to the
undisturbed value, so the dipole strength is constant for all
particles. When the Reynolds number based on the cell size
is small, the large-scale flow induced by jth particle is gov-
erned by the dimensionless Stokes equations

� · u j = 0,

�pj − �u j = − S� ���x − x j�
�y

ex +
���x − x j�

�x
ey� , �3�

u j = 0 on y = 0;1,

where S= 10
3 �a3. The dimensionless particle radius a is re-

lated with other groups by a= �3�LxLz /4�N�1/3, where Lx
and Lz are the dimensionless sizes of the cell in the x and z
directions, respectively.

The solution of linear equations �3� is constructed in
terms of the 2D Fourier series. The similar approach has
been applied for point particle forces sedimenting in a qui-
escent fluid �12�. The fluid flow is periodic in the x and z
directions, so it can be sought for an arbitrary particle posi-
tion in terms of Fourier series in the plane parallel to the
walls, with the wave vectors commensurate with the cell
sizes,

q j = �
kx,kz

q
j
* exp�i�kxx + kzz��, q j = �u j,pj� , �4�

u�t,xl� = �
kx,kz

�exp�i�kxxl + kzzl���
j�l

N

u
j
*	 , �5�

kx,z = mx,z2�/Lx,z, mi = 0, � 1, � 2, ¯ .

Substituting expansions �4� into Eq. �3� one obtains a system
of ordinary differential equations �ODE� for q

j
*:

�*·u
j
* = 0, �6�

�*p
j
* − �*u

j
* = − Sn

j
*
d��y − yj�/dy

ikx��y − yj�
0

� , �7�

u
j
* = 0 on y = 0;1, �8�

�* = �ikx,
d

dy
,ikz
, �* =

d2

dy2 − k�
2 , k�

2 = kx
2 + kz

2,

n
j
* =

exp�− i�kxxj + kzzj��
LxLz

.

When k�=0 the solution of Eqs. �6�–�8� is simple,

u
xj
* = �− Sn

j
*y as y � yj ,

− Sn
j
*�y − 1� as y 	 yj ,

	
u

yj
* = u

zj
* = 0 as k� = 0.

When k��0 the system �6�–�8� can be reduced to a single
ODE for the Fourier transform of the normal velocity,

�*2u
yj
* = − ikxSn

j
*�d2��y − yj�

dy2 + k�
2 ��y − yj�� , �9�

u
yj
* =

du
yj
*

dy
= 0 on y = 0;1. �10�

The dipole approximation fails to describe the hydrody-
namic interactions of close particles. However, we assume
that large-scale disturbances with the length scale compa-
rable to the cell size play a key role in a fluctuation evolution
while interactions at distances of the order of particle size are
of less importance. For this reason there is no need to resolve
small scales for which the dipole model gives only crude
representation.

A numerical treatment of the problem requires a trunca-
tion of the Fourier series �4� with a number of harmonics
great enough to resolve properly the evolution of large-scale
fluctuations. Truncated series result in a smoothing of the
concentration and velocity fields in the x and z directions. To
smooth the particle effect on large-scale flow in the normal
direction one can present the singularity on the right-hand
side of Eq. �9� in terms of truncated Fourier series in y,

− ikxSn
j
*�d2��y − yj�

dy2 + k�
2 ��y − yj��

= − ikxS�
ky

�k�
2 − ky

2�ñj exp�ikyy� ,

ñj�t,k� =
exp�− ik · x j�

LxLz
, k = �kx,ky,kz�, ky = 2�my .

Then the solution of the fourth-order ODE �9� is

u
yj
* = − ikxS�

ky

�k�
2 − ky

2�ñj

k4 exp�ikyy� + �
n=1

4

an
y
n, �11�

k2 = kx
2 + ky

2 + kz
2, 
1,2 = exp��k�y�, 
3,4 = y exp��k�y� .

Here 
 j are the solutions of the homogeneous equation �9�.
The four unknown constants an

y are found uniquely in order
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to satisfy four boundary conditions �10�. The equations gov-
erning the Fourier coefficients of other velocity components
can be also derived from Eqs. �6� and �7�,

�*u
xj
* = − iSkz�

ky

�ky
2k2 + kx

2�k�
2 − ky

2��ñj exp�ikyy�
k2k�

2

− 2ikx�
n=1

2

an+2
y 
n, �12�

�*u
zj
* = 2iSkxkz�

ky

kyñj exp�ikyy�
k2 − 2ikz�

n=1

2

an+2
y 
n. �13�

Their solutions are sought similar to Eq. �11� with the four
unknown constants a1,2

x,z to be found from the no-slip condi-
tions on the walls.

The velocity disturbance induced by a single particle in a
cell is zero with a high degree of accuracy at the particle
position x=x j. This means that the possible particle self-
effect is negligible, and one may calculate a single sum � j

Nu
j
*

over all particles in Eq. �5�, rather than the sum � j�l
N u

j
* for

each particle l.

III. NUMERICAL RESULTS

An initial particle distribution over the cell may be either
homogeneous or inhomogeneous. To form a homogeneous
distribution we seed randomly nonoverlapping spheres over
the whole volume. An inhomogeneous distribution can be
assigned by seeding of some particle portion into a smaller
volume. The equations of particle motion �1� are integrated
using the fourth-order Runge-Kutta routine with the time
step �t=0.01. The dimensionless particle radius is
a=2.5�10−2, which is the same as the experimental value
�6�. Most results are obtained for the cell sizes Lx=Lz=2 and
the average particle content �=10−2. The corresponding par-
ticle number in the cell, N=3�LxLz /4�a3=611, is compa-
rable with the particle number in the ASD �8� and LBM �9�
calculations. The disturbance velocity is evaluated using
Eqs. �4� and �11� with the sums truncated at some cutoff
number mmax, so that all modes with �my � �mmax and
�mi � �mmaxLi , i=x ,z, are taken into account. Large mmax
makes the evaluation of the truncated sums in Eqs. �4� and
�11�–�13� computationally expensive. The total number of
the modes is Nm= �2mmax+1��2mmaxLx+1��2mmaxLz+1�
�mmax

3 , and the number of operations grows like
NNm�Nmmax

3 . Different mmax=2–6 are tried in the calcula-
tions of the diffusivity. The usual cutoff number is mmax=4
and Nm=2601.

A. Particle trajectories

The disturbance velocity given by the dipole approxima-
tion differs from the exact solution in the Stokes regime �14�
at small distances. As a result trajectories of two isolated,
interacting spheres also differ from the exact ones when an
initial cross-stream separation is small. However, the dipole
representation of the Stokes flow retains the reversibility
property, which is important when calculating migration

across streamlines. Figure 1 shows typical trajectories of one
particle relative to the pair midpoint x0−y0tex in the �x ,y�
plane. The cell sizes are Lx=Lz=2, mmax=6, initial particle
positions are x10= �x0−�x0 /2�, x20= �x0+�x0 /2�, with
�x0=1 and different y0, �y0, �z0. The trajectories are passing
and symmetric when the initial separations in the gradient
direction �y0 are greater than a critical value. They are re-
versible, and such interactions do not contribute to the diffu-
sivity. Small oscillations are due to the periodic particles and
series truncation.

Another class of reversing or swapping trajectories has
been found recently for linear shear flow between walls ei-
ther in the Stokes �7� or in the finite-inertia �15,16� regimes.
The normal component of the relative particle velocity
changes the sign at small �y0. As a result the particles ini-
tially approach each other, then move across the streamlines,
reverse their directions, and separate without passing each
other. The swapping trajectories result in net particle cross-
stream displacements. This migration mechanism has been
proposed �7� as an explanation of the enhanced hydrody-
namic self-diffusivity in dilute suspensions.

Particle separations on the reversing trajectories remain
always large compared to the particle radius. The swapping
effect is due to long-range pair and wall-particle interactions
and can be described using the dipole model. Figure 2 shows
the trajectories calculated for the same normal separation and
different transverse separations. The reversing trajectories in

FIG. 1. Passing trajectories of isolated particle pairs. Trajecto-
ries start at y0=0.6, �x0=1, �y0=0.016, �z0=0 �solid line�,
�y0=0.032, �z0=0 �dashed line�, �y0=0.016, �z0=0.032 �dotted
line�. Time required to pass a distance from point A to A� is 6.5.

FIG. 2. Reversing trajectories of isolated particle pairs are
closed in the periodic system. Trajectories start at y0=0.6, �x0=1,
�y0=0.008, �z0=0,0.2,0.3 �solid, dashed, and dashed-dotted lines,
respectively�. Time required to pass a small distance from point A
to A� is long, trev=45.
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the periodic system, unlike the system infinite in the x direc-
tion, are closed and remain reversible. The period is large,
Tst=384, for �y0=0.008, �z0=0 �solid line in Fig. 2�. The
first particle approaches the second one, then moves in the
opposite direction and interacts with periodically replicated
opposite particle. It returns to the original streamline because
of the antisymmetric interaction.

Typical particle separations in either the flow or the vor-
ticity directions, �x��z�0.2, are comparable with the inter-
particle distance �LxLz /N�1/3. Besides, an interaction time for
reversing trajectories trev=O�100� is much longer than that
for passing trajectories. The dimensionless time required to
pass a small distance from point A to A� on the reversing
trajectory shown in Fig. 2 �dashed line� is 45, while that for
the passing trajectory in Fig. 1 is 6.5. As a result the pair
cannot be treated as an isolated even in the dilute suspension
with �=0.01 and a=0.025. It has neighbors at comparable
distances during the interaction. The effect of other particles
on the pair is illustrated in Fig. 3. Two particles are placed
initially at the points A and B��z0=0.2�. The other 609 par-
ticles are seeded randomly over the cell. Dashed lines are the
trajectories of the isolated pair when the effect of other par-
ticles is neglected �the same as the dashed trajectory in Fig.
1�. Figure 3�a� shows the trajectories when the effect of only
one closest neighbor �particle C� is taken into account. The
simulation time is trun=300. As the initial separation is small
the pair trajectories in the three-particle system are close to
the reversing trajectories until the first particle reaches the

point A�. Then the first trajectory deviates significantly from
the reversing trajectory due to the interaction with the par-
ticle C. Figure 3�b� presents the pair trajectories during
0� t�150 when the interactions between all particles in the
cell are taken into account. The pair normal velocities and
positions vary fast and randomly due to long-range collective
particle interactions. Large-scale concentration and velocity
fluctuations correlate during a time tcor=O�1�, required for
particles separated by a distance of order H� in the normal
direction to translate a comparable distance relative to each
other in the streamwise direction. tcor is much shorter than
the time of reversing trajectories trev=O�100�. The interac-
tions of particles A and B contribute to their displacements.
However, multiple long-range interactions lead to a loss in
memory of a relative pair position during tcor. Thus the cross-
stream migrations are due mainly to large-scale fluctuations.
The same conclusion follows from the calculations of the
mean-square displacements.

B. Self-diffusivity

The self-diffusivity is evaluated as the time rate of change
of half the mean-square displacements,

Ds =
1

2

d

dt
��y�y� . �14�

The displacements should be followed for very long times
�8�. The simulation time is usually trun=400. Even greater
run time, trun=1200, is chosen for the systems with less N or
mmax. The self-diffusivity is evaluated from Eq. �14� using
the linear best fits of the displacement curves. The mean-
square displacements are calculated as functions of initial
particle positions yl0. The data are averaged over particles in
slices y0−hy 
yl0
y0+hy, hy =0.05 and over 30 runs. Figure
4 shows the displacements for a homogeneous initial particle
distribution calculated for different y0 as functions of time. It
should be reminded that ��y�y� and Ds are scaled using the
separation between the walls rather than the particle radius.
The curves are similar qualitatively to those obtained by
ASD �8� and LBM �9� for dense suspensions. The depen-
dences are quadratic in time initially. Such a behavior corre-
sponds to the regime when particle positions are still strongly
correlated. After a time t=O�1� the curves show the linear
behavior corresponding to the diffusive regime. The slopes
are close for particles starting in the middle part of the cell.
The diffusivity is less for particles close to the walls as the
velocity disturbances are zero on the walls. The time neces-
sary for the diffusive regime to be reached is independent of
� �see Fig. 4�b��. ASD simulations �8� reported approxi-
mately the same value of the transient time for dense suspen-
sions. It was assumed that the transient time should be large
in very dilute suspensions as the interactions of close par-
ticles are seldom. However, within the present mechanism of
the diffusivity, the correlations in the positions of distant
particles are important. As a result a loss in memory occurs
during the correlation time tcor=O�1� regardless of the par-
ticle concentration.

Figure 5 presents the diffusivity in the median slice of the
cell, 0.4�yl0�0.6, as functions of the cell sizes, or the pe-

FIG. 3. Effect of other particles on reversing pair trajectories.
Dashed lines are the trajectories of the isolated pair placed initially
at A and B��z0

AB=0.2�. Other particles are seeded randomly over the
cell. �a� Pair trajectories �solid lines� due to the interactions with
closest neighbor �particle C, �z0

AC=0.104�. Dashed-dotted line is the
trajectory of particle C. �b� Pair trajectories due to the interactions
with all particles in the cell.
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riods in the two directions. Periodic images influence signifi-
cantly on the particle migrations when they are located at
distances comparable to the separation between the walls. A
sharp increase can be seen for small sizes in the flow direc-
tion �Fig. 5�. The dependence on the size in the vorticity
direction exhibits an opposite trend. The diffusivity is
approximately constant for the cell sizes in both directions
greater than 2. The reason is that the normal velocity
disturbance between no-slip walls decays exponentially at

large distances �17� when L	1. The simulations with small
periods Lx�1 exclude the long-wave harmonics
k=��1,my ,mz /Lz�. The figure thus supports the assumption
that large scales are most important for the diffusivity in a
dilute suspension. Different truncations of Fourier series lead
to the same conclusion since Ds enhances only slightly when
mmax	4.

The diffusivity in dense suspensions is attributed to short-
range interactions of close particles. However, a strong de-
pendence on the system size similar to the dependence on Lx
in Fig. 5 was also observed for dense 3D ��=0.35� �8� and
2D ��=0.25� �9� systems. The diffusivity grows with the
particle number when N
200. It was concluded �9� that the
effect is due to particle interactions with their periodic im-
ages. The distance between the periodic particles was large,
Lx�35.4a�0.5 at �=0.25, N=200 �the distance between
the walls was kept constant at 71a�. Hence long-range inter-
actions may be important in evaluating the diffusivity even
for dense suspensions.

Figure 6 shows the self-diffusivity in a homogeneous sus-
pension at �=10−2, Lx=Lz=2 as a function of initial particle
position. A local minimum is obtained at the center of the
cell where the diffusivity is usually measured in the
experiments. The average value for particles in the median
slice, 0.4�yl0�0.6, is Ds=2.02�10−7�1.3�10−8. The
diffusivity is also less for particles close to the walls
because of the no-slip conditions for fluid velocity distur-
bances. Even though the diffusivity varies across the cell
width, the average concentration remains uniform since the
particle migrations during the simulation time trun are small,
�y��Dstrun
0.01 �see also Fig. 4�b��.

A nonuniform concentration may be assigned artificially.
To form inhomogeneous initial distribution we seed ran-
domly 5% of the total particle number into the middle sec-
tion of the cell, 1 /3
yl0
2 /3, and the remaining particles
uniformly over the whole cell. Even small concentration in-
homogeneity �solid line in Fig. 7� produces significant
change in the diffusivity �cf. Figs. 6 and 7�. One would ex-
pect that the diffusivity is proportional to the local concen-
tration, if migrations are caused by a local mechanism such
as pair interactions on reversing trajectories. However, the
diffusivity increases far from the region of enhanced concen-
tration, at the distances 0.1–0.2 from the walls. This requires
the diffusivity in dilute suspensions to be due to a global
mechanism such as large-scale fluctuations.

FIG. 4. �a� The mean-square displacements as a function of time
for different initial particle positions yl0 and �=10−2. �b� Log-log
plots for particles in the median slice, 0.4
yl0
0.5, �=10−2 �solid
line�, and �=3�10−3 �dashed-dotted line�. The times necessary for
the diffusive regimes �linear dependences� to be reached are com-
parable for different �.

FIG. 5. Effect of the cell sizes on the diffusivity.

FIG. 6. Self-diffusivity in a homogeneous suspension at
�=10−2 as a function of initial particle position yl0.
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The self-diffusivity is evaluated for different particle
volume fraction. The dependence Ds��� for particles in the
median slice is shown in Fig. 8. In the experiments �6�,
Ds was found to be linear in �, and Ds /�=2.25�10−5. The-
oretical dependence is also linear. The best fit gives
Ds /��2�10−5 which is close to the experimental value.
The linear dependence can be readily explained within the
fluctuation mechanism of the diffusivity following to the
speculations by Caflisch and Luke for a sedimenting
suspension �18�. The number fluctuations �n for particles
distributed randomly are O�N1/2�. As a result one has
Ds� �u2�� ��n2��N��.

IV. CONCLUSIONS

The shear-induced diffusion in a dilute suspension of non-
Brownian neutrally buoyant particles has been considered.
The suspension flow in a periodic Couette cell has been
simulated based on the dipole approximation. Both revers-

ible passing and reversing trajectories of an isolated pair are
obtained within the model. Collective long-range interactions
lead to a loss in memory of a relative pair position during a
time O�1�.

The diffusivity is due to the large-scale fluctuations in
particle concentration and fluid velocity rather than long-
term pair interactions on reversing trajectories. The diffusiv-
ity in a homogeneous suspension is linear in the particle
volume content. The model compares well with the experi-
mental data �6�. The self-diffusivity varies across the cell
width. The maxima are at the distances 0.3H�–0.4H� from
the walls. Even small concentration inhomogeneity results in
a significant diffusivity growth near the walls.
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